Stabilizing precipitate growth at grain boundaries in alloys

  • 📰 ScienceDaily
  • ⏱ Reading Time:
  • 22 sec. here
  • 2 min. at publisher
  • 📊 Quality Score:
  • News: 12%
  • Publisher: 53%

Car Car Headlines News

Car Car Latest News,Car Car Headlines

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Researchers at the University of Illinois Urbana-Champaign have identified a novel pathway to stabilize the nanoscale precipitates in alloys. In a new study, materials science and engineering professor Pascal Bellon, postdoctoral researcher Gabriel Bouobda Moladje and their collaborators show that it is possible to utilize nonequilibrium processes to stop precipitate coarsening, which results in stable nanostructures.

The team used computational modeling to investigate precipitates formed at the domains between different crystals of the material, called grain boundaries, when subjected to irradiation, a nonequilibrium force. In an equilibrium environment, forces are balanced and there is no net change to the material. In most applications, however, hard materials are subjected to nonequilibrium forces like irradiation, or even stirring.

 

Thank you for your comment. Your comment will be published after being reviewed.
Please try again later.
We have summarized this news so that you can read it quickly. If you are interested in the news, you can read the full text here. Read more:

 /  🏆 452. in CAR

Car Car Latest News, Car Car Headlines